

Towards a PowerSoC Solution for Automotive Microcontroller Applications

Christoph Sandner, Gerhard Maderbacher, Karlheinz Kogler, Joachim Pichler, Federico Capponi, Herbert Gruber, Sylvia Michaelis, Dietrich Michaelis, Frank Prämassing, Anamaria Anca, Franz Reininger (Infineon Technologies Austria AG, Villach),

> Andreas Einwanger, Gottfried Beer (Infineon Technologies AG, Regensburg)

EU FP7-ICT-2011-8 - PowerSWIPE - Project no.: 318529

- Automotive uC Application
- Power Conversion Requirements
- Demonstrator System Architecture
 High-Voltage (HV) DC-DC
 Low-Voltage (LV) DC-DC
- Challenges:

□ Efficiency, packaging, ringing, EMI, cost

Conclusions

- Take Up No Space
- Cost Nothing
- Last Forever
- Zero Power Loss

[Cian Ó Mathúna, Tyndall National Institute, Ireland]

Oct. 6, 2014

PowerSwipe Project Partners

Motivation

[L.S. Ming, "Architecture Trends Body Electronics", 2010]

Assumptions: Network with 40 ECUs. Average Current Consumption per ECU 200mA. ECUs with scalable performance save 50 % (half average current consumption). Partial Network Mode: Capable ECUs remain 95% of run time in partial network mode with a current consumption of 1mA (µC off) resp. 10mA (µC in STOP or IDLE).

Automotive uC Application

Typical Engine Management Module:

AURIX™ Engine Management System

SEVENTH FRAMEWORK PROGRAMME (infineon

Alternatives to 2-step fixed Vint approach:

1-step

...not really...

2-step flex Vint:

Fibonacci SC-DCDC as 1st Stage

[P. Alou, J. Oliver, UPM]

Infineon

High-Voltage (HV) Chip:

□ Vin: 16V...6V
□ Vout: 5.0...3.3V
□ lout_max: 500mA
□ η_peak: 80%
□ PFM, CCM, DCM

Low-Voltage (LV) Chip: Vin: 5V...3.3V Vout: 1.0...1.3V lout1_max: 500mA lout2_max: 200mA η_peak: 90% PFM, CCM, DCM (Embedded with uC)

□ Technology: Automotive qualified
 □ Temp range junction: -40deg ... +150deg

Automotive uC Application

Power Conversion Requirements

Demonstrator System Architecture ☐ High-Voltage (HV) DC-DC

Low-Voltage (LV) DC-DC

Challenges:

Efficiency, packaging, ringing, EMI, cost

Conclusions

Vin=12V, fsw=10MHz, ESR_L=500m Ω , ESR_{COUT}=50m Ω , ESR_{CHS}=100m Ω , ESR_{CLS}=50m Ω

Automotive uC Application

Power Conversion Requirements

Demonstrator System Architecture

High-Voltage (HV) DC-DC
Low-Voltage (LV) DC-DC

Challenges:

Efficiency, packaging, ringing, EMI, cost

Conclusions

Efficency vs. Load:

Efficiency vs. Switching Frequency:

LV DCDC – CCM/DCM

Package Parasitics: HF Issue

 \rightarrow Without SiP integration such HF switching is not possible at all due to ringing!

Theoretical Efficiency of an SC DCDC with Different Gain Modes (Vout=1.3V)

4th International Power Supply on Chip Workshop (PwrSoC2014)

ofineon

Topology:

- Series-Parallel
- Cfly: 8x 30nF
- Cout: 260nF

Gain modes:

- 1/2 (Vdd=3.3V)
 1/3 (Vdd=5V)
- 4 Interleaved Stages:
 - 2 Cfly/stage
 - 9 Switches/stage
 - fsw = 5 MHz max.

Controller:

 Pulse Frequency Modulation (PFM)

SC DC-DC Converter: Efficiency Simulation

(Vin = 5V: Gain=1/3; Vin = 3.3V: Gain=1/2; Vout=1.3V)

eWLB Packaging

- 1: "Functionalized" Silicon interposer with integrated Caps and TSVs. Routing plane on bottom side
- 2: Active die with Cu-pillar/Sn-cap die to interposer wafer bonded
- 3: Thinfilm inductor on Silicon die to wafer bonded
- 4: molded "artifcial wafer"
- 5: redistribution layer (RDL) and solder balls

- Main threats towards a product:

- Maintain the performance:
 - Concept: Chose optimum partitioning
 - Efficiency: Improve DCR of L, ESR of C, power switches
 - Ringing: Optimize loop inductances in chip/package
 - High energy density \rightarrow thermal issues
- COST, COST, COST ... for high volume products
 - → Get rid of TSVs, reduce cost of inductor and capacitor topology

- Main Potential:

- Footprint and space constraint products
- EMI critical products: EMI expected to improve due to much shorter current loops on both DCDC-Cin and uC decap
- Exploit concepts with multiple passive components (SC-DCDC)
 no pincount constraints

PowerSwipe Partners:

Tyndall National Institute / University College Cork, Ireland
Infineon Technologies AG, Germany
Infineon Technologies Austria AG, Austria
IPDiA, France
Universidad Politécnica de Madrid (UPM), Spain
Robert Bosch GmbH, Germany
Université de Lyon, Claude Bernard (UCBL), Lyon

This work is funded by: DEU FP7-ICT-2011-8 – PowerSWIPE – Project no.: 318529